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This paper addresses the dynamic behaviour of a chemical oscillator arising from the
series coupling of two Brusselators. Of particular interest is the study of the associated Hopf
bifurcation and double-Hopf bifurcations. The motion of the oscillator may either be
periodic (bifurcating from a Hopf-type critical point), or quasi-periodic (bifurcating from
a compound critical point). Furthermore, bifurcation analysis reveals that the limit cycles
associated with the first Brusselator are always stable, while that generated by the second
Brusselator may be unstable if the parameter values are chosen far from the stability
boundary. It is interesting to note that in the vicinity of the double-Hopf compound critical
point, there exist periodic as well as quasi-periodic solutions. The quasi-periodic motion is
stable for a small parameter region. A robust Gauss—Seidel like implicit finite-difference
method (GS1) has been developed and used for the solution of the resulting initial-value
problem (IVP). In addition to being of comparable accuracy (judging by the similarity of the
profiles generated) with the fourth order Runge-Kutta method (RK4), the GS1 method will
be seen to have better numerical stability property than RK4. Unlike the RK4, which fails
when large time steps are used to integrate the IVP, extensive numerical simulations with
appropriate initial data suggest that the GS1 method is unconditionally convergent.
Moreover, it is more economical computationally.

© 2001 Academic Press

1. INTRODUCTION

It is well known that many chemical systems often exhibit oscillations; and thus the study of
the stability of these systems is important [1, 2]. One of the most widely studied non-linear
oscillators is the Brusselator system given by [1-4]

A—-X, B+X-5Y+D, 2X+Y-3X, X-oE (1)

where 4 and B are input chemicals, D and E are output chemicals and X and Y are
intermediates. It is known [4] that the trimolecular reaction step described by the third
equation of equation (1) arises in the formation of ozone by atomic oxygen via a triple
collision, enzymatic reactions, and in plasma and laser physics in multiple couplings
between modes.

0022-460X/01/300795 4+ 26 $35.00/0 © 2001 Academic Press



796 P. YU AND A. B. GUMEL

Many researchers have studied the ability of non-linear oscillators to synchronize to
external influences. This provides the basis for analytical investigations of multiple
oscillations in a chemical network. To better understand the complex dynamics associated
with such systems, Tyson [3] proposed a model consisting of two Brusselators coupled
in series in which two outputs to the first provide the two inputs of the second,
described by

A—>X, B+Xo>Y+U 2X+Y 53X, X oE,
E+U->V+F, 2U+V ->3U, U-G. )

Bifurcation and stability analysis on coupled oscillators has been an interesting topic for
several decades and many results have been reported in the literature (see, for instance,
reference [5-13]). Recently, the double-pendulum system has been reinvestigated in detail
to show that such a system can indeed exhibit rich dynamical behaviour, in the vicinity of
various compound critical points [14].

In this paper, analytical and numerical approaches are employed to solve a coupled
Brusselator model. Three different types of bifurcations emerged from the associated
(unique) equilibrium point, namely, Hopf bifurcation corresponding to the first oscillator,
Hopf bifurcation corresponding to the second oscillator, and double-Hopf bifurcation due
to the interaction of the two modes. Two families of limit cycles are generated from the two
Hopf bifurcations, while secondary bifurcations from the Hopf bifurcations may lead to
quasi-periodic solutions which represent motions on a family of two-dimensional tori.
Centre manifold theory [15] and normal form theory [5, 6, 16-18] were used to simplify the
theoretical analyses. In particular, the symbolic computer programs developed in references
[19-21] for computing normal forms using Maple were adapted and used to obtain
bifurcation solutions and their associated stability conditions explicitly. Moreover,
expressions for the critical boundaries, along which incipient and secondary bifurcations
leading to limit cycles and two-dimensional tori occur, were derived.

It is known that discretizing ODEs by explicit Euler or Runge-Kutta finite-difference
schemes can result in contrived chaos whenever the discretization parameters exceed certain
values (see reference [22]). Although chaos can often be avoided, even for Euler and
Runge-Kutta methods, by using small time steps, the extra computing costs incurred when
examining the long-term behaviour of a dynamical system may be substantial. It is therefore
desirable to use a numerical method which allows the largest possible time steps that are
consistent with stability and accuracy. To avoid contrived chaos, whilst retaining accuracy
and numerical stability, it may be necessary to forego the ease-of-implementation of
inexpensive explicit numerical methods in favour of implicit methods (which are, at times,
computationally intensive).

In the current study, a new Gauss-Seidel like first order implicit finite-difference method
has been developed for the solution of the associated IVP. In addition to its superior
stability and convergence properties in comparison with some existing numerical methods,
this new method is easy to implement and has a fast convergence rate (as expected of
Gauss-Seidel-type methods).

Extensive numerical simulations were carried out using both the RK4 and the GSl1
methods [23]. These experiments revealed that the GS1 method not only gives comparable
numerical results (of similar accuracy) with the RK4 method, but is also computationally
efficient and robust. For instance, unlike the RK4 method, which fails when large time steps
are used to integrate the IVP, extensive numerical simulations suggest that the GSI is
unconditionally convergent for appropriate choices of parameter and initial values.
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However, it was also found that when simulating the dynamic (periodic or quasi-periodic)
solutions, the GS1 method, unlike the RK4 method, may lose its stability if the dynamic
solution is very sensitive to initial conditions.

In section 2, a detailed static analysis is given for the associated equilibrium point
together with its stability conditions. Section 3 is devoted to the analytical study of the
coupled Brusselator, and section 4 presents the numerical simulation results. Finally,
conclusions are drawn in section 5.

2. SYSTEM EQUATIONS AND STATIC ANALYSIS

Consider the kinetic equations associated with equation (2), given by Tyson [3]
2. =fi(z, A,By=A — Bz, + 23z, — z,,
2, =fy(z, A, B) = Bz, — z3z,,
Zy =f3(z, A, B) = zy — z324,
Z4 =fa(z, A, B) = Bzy — 2324 + 2325 — 4,
s =fs(z, A, B) = 2324 — zizs, 3)

where z = (24, 25, 23, 24, 25)" = (X, Y, E, U, V)", 4 and B are real constants, and the
overdot denotes the differentiation with respect to time ¢. It is easy to show that the only
equilibrium of the system, determined by setting z =f =0, is

B 1 1\
Z, = Aa DR ABaiz . (4)
A B AB
Applying the translation z =y + z, to equation (3) yields

. B

V=B =Dy + A%y +— ¥+ 24y1y2 + yivas
. 2 B 2 2

V2 =—By; — A%y, —Z)H —2A4y1y> — Y1V,

. 1
V3 =y1 — ABy; — §y4 — Y3Va,

, 1 1
Vs = By; — ABy; + (E — 1>y4 + A*B’ys + 1B Vi — ViVa + 2ABy.ys + yiys,

. 1 1
Vs = ABy; — B va — A*B?ys — EJ’% + y3ya — 2ABy.ys — yiys. (%)
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Then the unique equilibrium of system (5) is y = 0, and the characteristic polynomial of the
linearized system evaluated at the equilibrium can be found as

[Z2+(A> — B+ 1)+ A7]
1
X [/13 + (AZB2 +AB+1— E)iz + (A®B® + A’B? + AB — 2A4)J + A3B3] =0. (6)

The two factors correspond to the first and second oscillators respectively. In order for the
equilibrium, y = 0, to be stable, the conditions

g1 =A>—B+1>0, A#0 7)

and

1
g2:A2B2+AB+1—E>0,

gs = A3B3 4+ A%?B%? + AB — 24 > 0,

ga=A’B*>0,ie, AB >0,
1
gs = <A232 FAB+1— E) (A3B® + AB> + AB —24) — A’B>>0, (8)

must be satisfied. Our focus here is to, first of all, discuss the stability of the two oscillators
separately, and then combine them to obtain the general (dynamical) picture. Suppose that
the parameters 4 and B are real and positive, as is the case for any chemical system. When
condition (7) is satisfied, it defines a region in the parameter A-B space under the curve g
but excluding the B-axis, where the first Brusselator is stable (see Figure 1). If the
parameters 4 and B are changed such that the B-axis (i.e., 4 = 0) is first crossed, then
a static bifurcation may occur; while when the curve g, is crossed first, a Hopf bifurcation
occurs, leading to self-excited periodic vibration of the first oscillator.
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Figure 1. Stable region for the first oscillator.
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Figure 2. Stable region for the second oscillator.
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Figure 3. Stable region for the equilibrium.

Consider, now, the conditions given in equation (8), which define the stable region for the
second oscillator (depicted in Figure 2). It is easy to observe that Figure 2 indicates the
possibility of having both static and Hopf bifurcations. The static bifurcation occurs when
the parameters are varied to cross the B-axis from the stable region, while the Hopf
bifurcation results when the curve g5 is first crossed. Note that the A4-axis (i.e., B = 0) is
excluded from the stability boundaries.

Now combine the stability regions shown in Figures 1 and 2 for the first and second
oscillators, respectively, to obtain the stable region for the equilibrium y = 0, as shown in
Figure 3. There are two parts: one part is the third quadrant excluding the 4- and B-axis,
and the other part is located in the first quadrant bounded by the curves g, and g5 which
intersect at the critical point P (0-48, 1-23).

If the real constants 4 and B are restricted as non-negative real values (as before), then
only the part located in the first quadrant needs to be considered. It is easy to observe the
routes to bifurcations from Figure 3. Suppose that the system’s parameters 4 and B are
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initially chosen from the shadowed region located in the first quadrant of Figure 3; then the
system (or the equilibrium state) is stable. There exist only two possibilities which may
violate the stability conditions for the equilibrium: the parameters are varied so that either
the curve ¢, is crossed first, where a Hopf bifurcation occurs, corresponding to the first
oscillator, or the curve g5 is crossed, resulting in yet another Hopf bifurcation
(corresponding to the second oscillator). An interesting point is the critical point P where
a double-Hopf bifurcation may occur, corresponding to the simultaneous excitation of the
oscillating modes [5, 6, 10, 14].

Based on the above discussion, we propose the following three possible models for the
bifurcations from the equilibrium point y = 0.

Case (1) If the parameters A and B are chosen too close to the stability boundary ¢,
then we have a bifurcation model corresponding to the first Brusselator oscillator. This
oscillator is independent of the second Brusselator, but the second Brusselator is coupled
with the first Brusselator. In other words, there is one-way coupling between the two
oscillators. Therefore, even when the second oscillator is stable, it may be excited to exhibit
vibrations due to the coupling. The bifurcation and stability analysis are completely
determined by the first two equations of equation (5).

Case (2). If the parameters 4 and B are chosen too close to the stability boundary gs,
then we have a bifurcation model corresponding to the second Brusselator. Unlike in Case
(1) above, however, this oscillator is not independent from the first Brusselator. Therefore,
the bifurcation and stability analysis cannot be carried out on the basis of the last three
equations of equation (5). Since on the stability boundary gs, the eigenvalues of the whole
system have a purely imaginary pair and the remaining three eigenvalues have negative real
parts, we may apply centre manifold theory to obtain a two-dimensional manifold which
includes the influence from the first oscillator.

Case (3). If the parameters 4 and B are chosen too close to the critical point P, then we
must establish a double-Hopf bifurcation model. Otherwise, the associated complex
dynamic behaviour of the system (such as quasi-periodic solutions or chaos) may not be
observed if single-Hopf bifurcation model (either the first or the second oscillator) is used. In
this case, the model is of codimension two [5, 10] and we should use both 4 and B as
independent bifurcation parameters.

3. ANALYSIS OF THE DYNAMICAL SYSTEM

In this section, we shall use normal form theory as well as centre manifold theory to
consider the possible dynamic behaviour that the coupled Brusselator system, given by
equation (6), may exhibit. Three models will be established for the purpose of bifurcation
and stability analyses.

3.1. MODEL (I) HOPF BIFURCATION (THE FIRST OSCILLATOR)

First, consider Case (1) in which periodic solutions bifurcate from a critical point located
on the boundary g, (in the first quadrant, but not close to the critical point P). Then the first
Brusselator is decoupled from the second Brusselator and the first two equations of
equation (5) represent the centre manifold and the last three equations make no
contribution to the centre manifold. Thus, we may, instead of using the whole system (5),
consider only the first two equations of equation (5), and then apply normal form theory for
Hopf bifurcation [35, 6, 16-19] to the system to obtain the following normal form given in
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Figure 4. Bifurcation diagram for Model (I).

the polar co-ordinates:

1 24 A2 : 44* — 74> + 4
= A — —— 3 0=A4 —— "~ 42
PEATRa T XA+ 4%

)
where u = B — (1 + A?), treated as a small bifurcation parameter, and r and 0 are the
amplitude and the phase of the periodic motion respectively.

Now, based on equation (9), bifurcation solutions and their stability conditions can be
easily obtained. In fact, the first equation of equation (9) is sufficient in deriving the solution
of a family of limit cycles together with the stability conditions. The second equation of
equation (9) gives information on the frequency of the bifurcating periodic solutions.

Setting # = 0 in equation (9) results in two steady state solutions:

o ,  4A(1 + A%
(@r=0, (b) r* = > A2 (10)
Solution (10a), » = 0, in fact, represents the initial equilibrium solution y; = y, = 0. When
A > 0, the bifurcating periodic solution (10b) exist for u > 0.

The stability of the steady state solutions is determined by the Jacobian of the first
equation of equation (9), J = (d/dr)(dr/dt) = d#/dr. When J < 0 (>0), the solution is stable
(unstable). A simple calculation indicates that when u < 0 (i.e., B <1 + A4?), the equilibrium
(r = 0) is stable. When p is varied to cross the critical point y. = 0 (i.e., B =1 + 42) and
becomes positive (1 > 0,1i.., B> 1 + A?), the equilibrium loses stability and bifurcates into
a family of periodic solutions described by solution (10b).

For the periodic solution (10b), it is shown that when u >0 (4 >0), the Hopf bifurcation
is supercritical, i.e., the periodic solution given by (10b) is always stable for u > 0. The
bifurcation diagram and periodic solutions are depicted in Figure 4.

3.2. MODEL (II): HOPF BIFURCATION (THE SECOND OSCILLATOR)

In this case, a critical point is chosen from the boundary g5, where another family of limit
cycles bifurcates from the equilibrium y = 0. However, unlike the analysis for Model (I), we
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cannot obtain a closed-form solution for A or B from equation gs = 0, since it gives either
a fifth or sixth degree polynomial. Therefore, we must use numerical values of 4 and B in
finding the normal forms for this Model. The dynamic behaviour of the system can be
studied using the following mechanism: first of all, choose an arbitrary value of A > 0, and
solve g5 = 0 to obtain a critical value B,, and then give a perturbation to B in the form of
B = B, + u, where p is a small perturbation parameter. Next, apply centre manifold theory
to find a two-dimensional centre manifold and finally, employ normal form theory to obtain
the explicit expression of the normal form on the centre manifold.

For instance, consider 4 = 1. Solving g5 = 0 then yields a real root B, = 0-903478. It
should be noted that g5 = 0 gives multiple roots, and one should choose the largest real
positive root which is located on the boundary g5 (see Figure 3). Next let B = 0-903478 + p,
and p = 0 corresponds to the critical point (4, B) = (10, 0-903478). Substituting A = 1 and
B = 0903478 + u into equation (5) and then evaluating the Jacobian of the system on the
equilibrium y = 0 yields the following eigenvalues: one purely imaginary pair +0:676193i,
onereal —1-:612918 and a complex conjugate — 0-548261 +0-836307i. Therefore, similar to
Model (I), one can apply the centre manifold theory and the normal form theory [5, 6,
16-19] to find the normal form given in polar co-ordinates:

F=— 1-286789ru — 0-042734s3, 0 = 0676193 + 0-816930u — 0-024482r2.  (11)

A bifurcation analysis similar to that given for Model (I) can be applied for this case.
However, it should be noted that for Model (I), a negative value of u is located in the stable
region of the initial equilibrium, while here (in Model II), a positive value of u is located in
the stable region. Therefore, we should consider bifurcations when p is varied from positive
to negative. This can be observed from the vertical dotted line which passes through the
point 4 = 1 (see Figure 3). The results are summarized below: the steady state solutions are

(@) r =0 (initial equilibrium),
(b) ¥* = — 30-111522u  (periodic solution) (12)
and their stability conditions are given by

e Stable, when u > 0,
Equilibrium (a) (13)
Unstable, when u <0

and

o . Does not exist, when pu > 0,
Periodic solution (b) (14)
Stable, when u <0

respectively. The bifurcation diagram is similar to Figure 4 and thus omitted, but it should
be noted that the parameter u should be varied from positive to negative (reserving the
arrow of the p-axis).

In Table 1, we list the results for different values of A from 0-8 to 7-0. It is seen that for all
the different values of A, the equilibrium loses stability at u = 0, and changes from stable to
unstable when the p is varied from positive to negative. This can be clearly observed from
Figure 4 (that is, the equilibrium moves along the vertical dotted line from the stable region
to unstable region). However, unlike Model (I), where the bifurcating periodic solutions are
always stable, here the limit cycles change stability at a critical point 4, = 6:046327. When
A < (>)A,, the bifurcating limit cycle is stable (unstable).



TaBLE 1

Bifurcation solutions for Model (11)

A B, Normal form Solution Stability

0-8 1-:001074 i = — 0980373 u — 0-126392r3 r=0 u>0,U:u<0
0 = 0596561 + 0662730 — 0-058015r2 = — 7756584 1 S:u<0

09 0949154 i = — 11312497 u — 0-16216073 r=0 cu>0,U:pu<0
0 = 0-638215 + 0-740638 u — 0-082818r2 = —06976141pu S:u<0

1-0 0903478 i = —1-286789r u — 0-042734+3 r=0 u>0,U:u<0
0 = 0676193 + 0-816930u — 0-024482r2 r? = — 3011152 S:u<0

1-5 0-737696 i = —2-120831r p — 0-075679r3 r=0 u>0,Uu<0
0 = 0828179 + 1:177633 1 — 0-073857 > r? = — 2802389 S:u<0

2-0 0632296 i = —3:025811r u — 0-361801r3 r=0 u>0,U:u<0
0 = 0941335 + 1-509680u — 0-53846012 r?=—8363191pu S:u<0

30 0-503182 i = —4979681r u — 0-525145r3 r=0 u>0,U:u<0
0=1-108202 + 2:107220 1« — 154425072 r? = — 9482482 S:u<0

50 0-372230 — 92476697 1 — 0-0900342r3 r=0 u>0,U:u<0
0= 1 331097 + 3-107997 u — 120672172 —102:7128u S:u<0

6046327 0331776 i = — 11:605807r u — 0-0000007> r=0 u>0,U:u<0

(Ay) 0 = 1-417762 + 3-554365u — 0-455397 > Not determined

70 0-303357 i = — 13-808860r u + 0-026177r3 r=0 u>0,U:u<0

0 = 1485998 + 3:924694 1 — 0-506325r>

r? = 5275268 1

THAOW YOLVTASSNYd dd1dNOD

€08
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3.3. MODEL (IlI: DOUBLE-HOPF BIFURCATION

For this case, the critical point is the point P (see Figure 3) where A = 0-479012 and
B = 1229453 at which the Jacobian of system (5) has two pairs of purely imaginary
eigenvalues: 1; , = + 0426596i, A3, = +0479012i and a real eigenvalue As= —
1-122382. We may consider the two modes as non-resonant because the ratio of the two
frequencies is 0-479012/0-426596 = 1-122870. Since near this critical point, the system is of
codimension two, we need to use two perturbation parameters [5, 6]. Thus, we choose both
A and B as the perturbation parameters and let

A =0479012 + u, and B = 1229453 + . (15)

Then the cigenvalues of the system evaluated at the equilibrium y = 0 are +0-426596i,
+0479012i and — 1-122382. After applying the centre manifold theory and the normal
form theory to the system, one may obtain the following normal form given in the polar
co-ordinates [20, 21]:
Py = —r[0:487023u; + 0-534819u, + 0-153084r7 + 0-0714697r3],
iy = — 1,[0:479012 0, — 0-5p, + 0-00746273] (16)
and
0, = 0426596 + 1:012126 4, + 0399767y, — 0-126129r2 — 0-051774r3,
0, = 0-479012 + u, — 0-00606673. (17)

The steady state solutions and their stability conditions can be derived from equation (16).
Furthermore, bifurcation routes of the system can also be found from equation (16).
Guckenheimer [5] has given a detailed classification for codimension two bifurca-
tion problems. For the coupled double-Brusselator model, we may apply the results
given in reference [5] or use the explicit formulas derived in reference [10] to obtain
expressions for the bifurcation solutions, their stability conditions as well as bifurcation
boundaries.

The steady state solutions are obtained by setting 7, = ¥, = 0 as follows:

(1) The initial equilibrium solution (ES):

ri=r,=0 (e, y; =0) (18)
(2) Hopf bifurcation solution (HB (I) with frequency w,):
1t = — (3181412, + 3-493635u,), r, =0,
w; = 0426596 + 1-413395u; + 0-840417 p5; (19)
(3) Hopf bifurcation solution (HB (II) with frequency w,):
ry =0, r3 = — 64:191814 1, + 67-0043804,,

@, = 0479012 + 1-389397 iy — 0-406458 5 ; (20
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(4) quasi-periodic solution (2-D tori with frequencies w;, w,):
rt = 26787429, — 34775561 5,
13 = — 64191814, + 67-004380.,,
®; = 0426596 + 0-956895u; + 1:316918 15,
®, = 0479012 + 1-389397 u; — 0-406458 5. (21)
The Jacobian matrix of equation (16) takes the form

J
[— 0487023 1, —0-534819 1, — 0-45925212 — 00714691 — 01429397, 7, ]
0 — 04790121, +0-5 1, — 002238772 [

(22)

which can be used for the stability analysis of the above steady state solutions.
Evaluating the Jacobian (22) on the fundamental equilibrium solution (18) results in the
stable region for the ES as

0-487023 u; + 05348194, >0 and 0479012, — 0-5u, > 0,
which can be written in a more convenient form,
Uty > —0910631y; and p, < 0958024y;. (23)
The boundaries defined by equation (23) lead to two critical lines, one of these is
Ly:p, =—0910631p;  (us < 0958024 1,), (24)

where a family of limit cycles bifurcates from the ES with the approximate solution HB(I)
given in equation (19). The second critical line is described by

Lyt gt = 09580244, (s > — 0910631 y1,) (25)

from which another family of limit cycles, given by the HB(II) solution (20), may occur.
It should be noted that the two critical bifurcation lines L, and L, are actually the two
tangent lines to the curves g, and g,, respectively (see Figure 3), which pass through the
critical point P. Thus, the conditions given in equation (23) indeed define the stability region
of the initial equilibrium (ES) in the neighbourhood of the critical point P.
Evaluating, now, the Jacobian matrix (22) on the Hopf bifurcation solution (19) results in
the stability conditions

04790121, — 0-5u, >0 (0974046, + 1-069638 11, < 0) (26)

or
[ty < 09580241, (1, < — 0910631 p1;) 27)

for the HB(I) solution. However, we should check whether the HB(I) solution exists under
the conditions given in equation (26). Note that the condition 0974046 u; + 1:069638u, < 0



806 P. YU AND A. B. GUMEL

implies that 3-181412u, + 3:493635u, <0, which indeed guarantees ri >0 (see
equation (19)) and thus stable periodic solutions exist in the region defined by equation (26).
The inequality given in equation (27) implies another critical line,

Lyt s = 09580244, (s < — 0910631 p1,), (28)

along which a secondary Hopf bifurcation with frequency w, takes place from the first
bifurcating limit cycle HB(I), leading to a 2-D torus described by solution (21). However, it
is noted that the critical lines L, and L; are located on a same straight line.

Similarly, a set of stability conditions associated with the HB(II) solution (20) can be
derived by evaluating the Jacobian (22) on this solution. Thus, for the HB(II) solution to be
stable, the inequalities

09580241, — s <0 and 41007231, — 5-323577 1, < O (29)

must be satisfied. The first inequality in equation (29) is always satisfied when the
parameters p; and u, are varied to cross the critical line L, from the stable region of the
equilibrium.

To check if an HB(II) solution exists in the region defined by equation (29), we may
rewrite the HB(II) solution as

r3 = — 64191814, + 67:004380u, = — 67-004380 (0-958024 — u5),
which is guaranteed positive under condition (29). Hence, the HB(II) solution exists in the
region defined by equation (29).
The second inequality of equation (29) defines a critical line,
Ly: us =0770295p;  (up > 0958024 uy), (30
where a secondary Hopf bifurcation with frequency w, takes place from the first bifurcating
limit cycle HB(II), leading to a same family of 2-D tori described by solution (21).

Next, to find the stability of the family of 2-D tori expressed by equation (21), we evaluate
the Jacobian (22) on equation (21) to get

— 030616877  — 0-1429397,r,
JZ—Dmri = . (31)

0 — 001492473

The stability conditions are then obtained from the trace and determinant of the Jacobian
as follows:

Tr = — (030616812 + 0:014924r2)
= — 72434211, + 9647153 11,
= 9647153 (11, — 0-75083541) < 0,
Det = 0-0045691212
= (— 8201446, + 10647153 11,)(0:958024 11 — 1)

= — 10-647153(pt, — 0770295 ;) (11, — 0958024 41;) > O. (32)
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Figure 5. Bifurcation diagram for double-Hopf bifurcation.

It is easy to see that the two inequalities given in equation (32) are automatically satisfied as
long as a solution (rq,r,) exists for a motion on the 2-D torus. For the existence of
a quasi-periodic solution (on a 2-D torus), given by equation (21), it is required that

[ < 07702951, and  p, > 09580244, (33)

In fact, the boundaries defined by equation (33) are indeed the critical lines Ls and L. Also,
note that the conditions given in equation (33) guarantee that the second condition for the
stability of the 2-D torus, given in equation (32), is satisfied. Moreover, it is noted that in the
third quadrant of the p; — u, parameter space, the condition u, < 0-770295 i, implies that
s — 0750835, < 0. Thus, the first condition for the stability of the 2-D torus (see
equation (32)) is also satisfied, and so the family of 2-D tori is stable in the region defined by
the existence condition (33).
Finally, note that the first inequality given in equation (32) yields a critical line,

Ls: i, — 0750835, = 0, (34)

from which a quasi-periodic solution (2-D torus) loses stability and bifurcates into a motion
n a 3-D torus (w4, w,, w3). However, this critical line is not located in the region defined by
equation (33) and therefore, this tertial bifurcation cannot occur physically.

The bifurcation diagram for Model (III) is shown in Figure 5, where critical bifurcation
lines are illustrated.

4. NUMERICAL METHODS

In this section, the numerical integration schemes to be used to verify the analytical
results obtained in the previous two sections are discussed.
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4.1. THE EXPLICIT RK4 METHOD

The RK4 method is a standard numerical integration procedure (see reference [22]), and
thus we will not discuss the method here. The program we coded is flexible for changing the
integration time step. However, the time step is fixed for each numerical experiment (so that
we can compare the robustness of RK4 and the GS1 methods). A fixed time step of / = 0-1
was chosen (< 0-1 if the time step limit is less than 0-1) unless when we want to find the time
step limit for the numerical scheme. The results are given below for the equilibrium and each
of the three models separately. For the consistency in comparison, the original differential
equation (3) is chosen for the numerical integration, and the initial condition is fixed as
z = (05,05, 05, 0-5, 0-5). Furthermore, we will measure the solution y from the equilibrium
z. which is given by equation (4). In other words, the results presented in this section are for
y =z — z.. Also, the associated central processing unit time (CPU) of the two numerical
methods will be compared.

4.1.1. For the equilibrium

The close-form stability conditions for the equilibrium y = 0 are given in equations (7)
and (8), which define the stable region shown in Figure 3. Numerous simulations, using
a number of points given in the (A4, B) space located in the stable region, boundaries and
unstable region, were carried out. Note that most of the points were chosen from the first
quadrant (which is the region of interest). Few points were chosen from the third quadrant
for testing purposes. It is expected that the numerical integration history will show
convergence for a point chosen from the stable region. However, it will be shown that for
a large time step, the RK4 method shows divergence even for a point chosen from the stable
region (hence, the method failed). The results are given in Table 2, where TSUL = time step
upper limit, denoting that the solution, which should be convergent or non-divergent,
becomes divergent if the time step of the RK4 is greater than TSUL. “Convergent” means
that the numerical solution converges to the true fixed-point 0, and “divergence” denotes
that the whole solution (all the five components) or part of the solution (some of the five
components) diverges to co. The interval given for the points chosen from stability
boundary indicates that all the five components of the solution do not converge to 0, nor
diverge to oo, but wander in the vicinity of 0 bounded by the interval, implying that the
points is indeed a critical point where u = 0.

4.1.2. For Model (I)

For this Model, we have simulated the RK4 program for several combinations of 4 and
B and used the formula given in equation (10) to obtain the following analytical predictions:

(1) A=1-0.
(@ B=25(pu=05) and r~ 11547,

(b) B=30(u=10) and r~ 1-6330.

(2) A = 20.
(@) B=55(u=05) and r~ 18257,

(b) B=60(u=10) and r~ 2-5820.

The numerical simulation results for the above four cases are shown in Figure 6, where only
the components y; and y, are shown since the two variables represent the first oscillator.
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TABLE 2

RK4 results for the equilibrium

809

A B Region (analytic) Result (numeric) CPU  time
(s) TSUL
1-24 Stable Convergent 0-30 1-54
05 0-90 Unstable Divergent
1-25 Boundary g, [— 0-0016, 0-0082] 2792 1-53
1-210679 Boundary g5 [— 0-0056, 0-0069] 3-60 1-58
1-50 Stable Convergent 0-03 1-57
08 0-80 Unstable Divergent
1-64 Boundary g, [— 0-0000, 0-0000] 0-29 141
1:001074 Boundary g5 [— 0-0000, 0-0000] 0-17 1-39
1-50 Stable Convergent 0-02 125
0-70 Unstable Divergent
10 2-:00 Boundary g, [— 0-0003, 0-0003] 2-18 0-60
0-903478 Boundary g5 [— 0-0000, 0-0000] 211 1-41
3-:00 Stable Convergent 0-03 0-082
20 0-60 Unstable Divergent
5-00 Boundary g, [— 0-0095, 0-0078] 41-72 0-02
0632296 Boundary g5 Divergent 0-00001
—10 —1-00 Stable Convergent 0-00 121
00 — 1-:00 Boundary g5 Divergent 0-00001
- 10 0-00 Boundary gs Divergent 0-00001
— 10 1-00 Unstable Divergent
1-0 — 100 Unstable Divergent

Comparing the amplitudes given in the figure with the above analytical predictions shows
that the numerical results obtained using RK4 method agree very well with the analytical
results.

4.1.3. For Model (II)
Similarly, we have considered several cases and applied the formulae given in Table 1 to
obtain the following analytical predictions:
(1) A=1-0.
(a) B=0-803478 (u=—010) and r = 17353,

(b) B = 0753478 (u = — 0-15) and r ~ 21253
(2) A = 20.
(a) B = 0612296 (u = — 0:02) and r ~ 0-4089,

(b) B = 0-602296 (1 = — 0:03) and r ~ 0-5009.

The numerical simulation results for the above four cases are shown in Figures 7 and 8. It is
noted that unlike Model(I), this Model has three non-zero variables ys, y, and ys even
though the first two variables, y; and y,, always converge to the equilibrium. Thus, in the
two figures, for each case, we show the limit cycles in three different co-ordinate systems:
Y3 — Va, V3 — Vs and y, — ys for a clear comparison with the analytical predictions. Also, it
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Figure 6. Limit cycles for Model (I): (a) A = 1-0, B=2'5;(b) A = 1:0, B=3:0;(c) A = 20, B=5'5;(d) 4 = 20,
B = 60.

has been noted that, unlike Model(I), where u can be chosen to be quite large, here yu must
be chosen to be very small, but the amplitudes of the limit cycles are still large. Additionally,
it was observed that when the value of A is chosen far away from the critical point P (see
Figure 3), the periodic solution is very sensitive to the initial conditions and the integration
time step. In order to obtain stable limit cycles for the four cases, very small time steps must
be chosen, in particular, for the case of © = — 0-15 of Figure 7 and the two cases given in
Figure 8. Moreover, initial conditions must be chosen to be very close to the (unstable)
equilibrium for the two cases shown in Figure 8. Otherwise, the solutions would not
converge to a stable periodic solution. Using A = 1, the numerical results (see Figure 7)
obtained show a good agreement with the analytical predictions, while for 4 =2, the
analytical results are smaller (in magnitude) than the numerical results (see Figure 8).

4.1.4. For Model (I11)

Finally, for Model(IlI), we consider the following three cases, where the analytical
predictions are obtained by using equations (19)-(21):

(1) A =04790, B=1-1295,i.e., pu; = 0-0, u, = — 0-10; this gives stable periodic solution
(Hopf I), with r{ = 0-5911, r, = 0.

(2) A =04790, B = 1-3295, i.e., uy = 0-0, u, = 0-10, this gives stable periodic solution
(Hopf II), with ry =0, r, = 2-:5885;

(3) A =04390, B=11975 1ie, u;=—004, pu,=—0032, this gives stable
quasi-periodic solution (2-D tori), with r; = 0-2033, r, = 0-6508.
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Figure 7. Limit cycles for Model (II) when 4 = 1-0: for u = — 0-10, (a) y3—y, plane; (b) y3—ys plane; (c) y,-ys
plane; for p = — 015, (d) y3-y4 plane; (¢) y3-ys plane; (f) y4—ys plane.

Here, it should be pointed out that the Hopf (I) and Hopf (1) bifurcation solutions do not
correspond, respectively, to the first and second oscillators. These two combined modes are
associated with frequencies ;.= 0426596 and w, = 0479012 respectively (see
equation (37)). The numerical results for the Hopf (I), Hopf (II) and 2-D tori are depicted in
Figure 9(a), (b) and (c) respectively. In these figures, we only presented the solutions in the
¥3—Y4 plane since figures in other planes are similar. It is noted that for the Hopf (I)
bifurcation solution, y; =y, =0. This is not surprising since one may use a
linear transformation to show that the first two components y; and y, must be zero since
ry # 0 and r, = 0. For the Hopf (II) and 2-D tori solutions, all the components of y are
non-zero.

In order to clearly show the stable quasi-periodic solution on a two-dimensional torus,
the trajectory y; in the five-dimensional state space is projected on to the plane y; = 0 and
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Figure 8. Limit cycles for Model (II) when 4 = 2-0: for p = — 0-02, (a) y3—y4 plane; (b) y3—ys plane; (c) y4—ys
plane; for u = — 0-03, (d) y3-y4 plane; (e) y3-ys plane; (f) y,—ys plane.

the half-plane y; =0, y, > 0, respectively, to obtain two Poincaré maps as shown in
Figure 10. Since the Poincaré maps are dense periodic orbits, the solution is indeed
a quasi-periodic motion on a 2-D torus.

4.2. IMPLICIT METHOD: GS1

Having noted the severe stability limitation associated with the use of the explicit
RK4 method for solving the IVP (6), there is clearly a need for an easy-to-use
numerical method with enhanced stability properties. One such method is constructed
below [23].
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Figure 10. Poincaré maps of a 2-D torus for Model (III): (a) projected on to y; = 0 plane; (b) projected on to
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4.2.1. Method for z,

Starting with the initial-value problem for z; given in equation (3) is expressed as

d
%zA—leanfzz—zl, £>0, z,(0)=2°, (35)

Z.IE

the development of numerical methods may be based on the approximation of
the time derivative in equation (35) by its first order forward-difference approximant
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given by

%:Z1U+f)—z1(t)

i / +0(/) as ¢ —0, (36)

where / > 0 is an increment in ¢ (the time step). Discretizing the interval ¢ > 0 at the points
t,=nl/ (n=0, 1, 2,...), the solution of equation (35) at the grid point ¢, is z(t,). The
solution obtained by a numerical method at the point ¢, will be denoted by Zj. Using
equation (36) in equation (35) and approximating the right-hand side functions
appropriately gives

ZVT =7+ ((A—BZV 4 Zh 2y 2y — 7. (37)

4.2.2. Methodfor Z2, Z3, Z4, Z5

Similarly, replacing the time derivatives for z,, z3, z4 and zs in equation (3), using
equation (36) and using appropriate approximations for their right-hand side functions,
lead to

Z5" =275 + ([BZyT —(ZyT) 257,

Zy = Zy + (24 - 25T Z4],

Zitt = Z4 + ([BZY - 25 25+ 252 2 — 75,
R VY AR VAR AR (33)

It is easy to show that although the GS1 method, described by equations (37) and (38), is
implicit by construction, equations (37) and (38) enable the IVP system (3) to be solved
explicitly via the sequential process

75+ /A s 4 (B2
(s v ARt R Y
142 1
n /2n+1 n /an+1
R e e o e CTRPP)
1+ /7) T+ /(01— 2325+ 25
and
n /Zn+lzn+1
zyt1 2T % 2 (43)

1 + /(Z:‘Fl)z

It is an easy exercise to verify that the principal part of the local truncation error associated
with each of the methods in equations (39)—(43) is of O(£?) confirming that the GS1 method
is first order accurate (see also reference [23]).

4.2.3. Numerical experiments

To test the behaviour of the GS1 method, numerous simulations were carried out using
various time steps with 4 =2, B =15 and Z,(0) = Z,(0) = Z3(0) = Z,4(0) = Z5(0) = 0'5.
The convergence property of the GS1 method using various time steps was compared with
those of some standard (well-known) methods in the literature and the results are tabulated
in Table 3.

It is clear from Table 3 that GS1 is most competitive in terms of numerical stability.
Expectedly, all the three explicit methods (Euler, RK2 and RK4) used in the simulations
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TABLE 3
Convergence for methods Euler, RK2, RK4 and GS1

[ Euler RK2 RK4 GSl1
0-001 Converge Converge Converge Converge
0-01 Converge Converge Converge Converge
01 Converge Diverge Converge Converge
0-2 Converge Diverge Converge Converge
03 Diverge Diverge Converge Converge
0-5 Diverge Diverge Diverge Converge
1 Diverge Diverge Diverge Converge

100 Diverge Diverge Diverge Converge
TaBLE 4

CPU time for GS1 and YK4

A B GSl1 YK4
0-5 1-24 0-42 127
05 1-25 0-42 130
0-8 1-50 0-44 1-40
1-0 1-50 0-47 1-38
2:0 3-00 0-44 (Diverge)

failed when large time steps were used. This is consistent with the fact that implicit
methods (and not explicit schemes) are most suited for solving non-linear IVPs such as
equation (5).

In Table 4, we compare the CPU times of the RK4 and GS1 methods. For convenience of
comparison, the time step is fixed at £ = 0-1, and the initial condition is again chosen as
Z1(0)=2Z,(0) = Z,(0) = Z3(0) = Z5(0) = Z(0) = 0-5. All the points (A4, B) given in Table 4
are selected from the stable region of the equilibrium. Thus, the numerical results should
show convergence for all the points. However, for the RK4 method, it indicates a divergence
for (4, B) = (2,3), implying that the time step 0-1 is not small enough for this case when
using RK4 method. It is worth emphasizing that all the numerical computations carried out
for this paper were implemented on a PC machine (PENTIUM III-700MMX 256K system).
The number of iterations used for the comparison is 50000. It is clearly evident form
Table 4 that the GS1 method only takes about one-third the CPU time of RK4, confirming
that GS1 is more efficient computationally.

Next, we compare GS1 method with the RK4 approach for the dynamic solutions.
Figure 11 shows the results for the equilibrium, Models (I) and (II), while Figure 12 gives the
results for Model (III). Comparison of the results clearly indicates that GS1 and RK4 give
roughly the same results. However, we already prove that the GS1 method is more robust
than the RK4 method, in particular, for the convergence of the equilibrium.

In the above discussion, we have shown that the GS1 method gives almost the same
accuracy as the RK4 does for many cases. In fact, we further observed that if a case (or
a chosen point in the parameter space) is not very sensitive to the given initial condition,
then the accuracy of GS1 is comparable with that of the RK4 for the same time step. The
time steps used in the simulations shown in Figures 11 and 12 were: 01 for the equilibrium,;
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Figure 11. Comparison of RK4 (a) and GS1 (b) for (1) A = 2-0, B = 1-5: equilibrium; (2) 4 = 2-0, B = 2-5: Model

(1); and (3) 4 = 1:0, B = 0-803478: Model (IT).

0-05 for Model (I); 0-02 for Model (IT); 0-1 for Model (I1T), Hopf (I) and Hopf (I1); 0-02 for the
two-dimensional torus. The same initial conditions were used in the numerical simulations
to generate the results depicted in Figures 11 and 12 given by z = (0-5, 0-5, 0-5, 0-5, 0-5).
However, it was found that the dynamical system was sensitive to the initial conditions
used. For example, for the results obtained for Model (II) shown in Figure 8, the initial
condition z = (05, 0-5, 0-5, 0-5, 0-5) leads to a slowly diverging result irrespective of the size
of the time step used. In fact, for the case u = — 0-02, i.e., B = 0:612296, we must choose an
initial condition near the orbit for convergence. For the case u = — 0-03, i.e., B = 0-602296,
even an initial condition close to the orbit does not work. It must be chosen almost on the
orbit. The RK4 and GS1 methods were compared for the two cases as follows: for the case
u = — 002, we chose the initial condition z = (2-5, 0-5, 1-0, 1-0, 1-0) which is near the final
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Figure 12. Comparison of RK4 (a) and GS1 (b) for Model (I11) when (1) A = 0-4790, B = 1-1295: Hopf (I);
(2) A =0-4790, B = 1-3295: Hopf (I1); (3) A = 0-4390, B = 1:1975: quasi-periodic motion on 2-D torus.

stable orbit, and found that the RK4 gives convergent results as long as the time step
¢ < 0-83, while GS1 give monotonically diverging results even for / = 0-000001. For the
case u = — 0-03, we chose the initial condition z = (2:0, 0-301148, 0-896217, 1-805416,
0-400966) which is almost on the final stable orbit, we then found that the RK4 shows
convergence if 7 < 0-36, while GS1 gives divergent results even when ¢ = 0-000001.
Finally, we compared the two methods for the quasi-periodic motion on
a two-dimensional torus. It is interesting to observe that, for this case, although the solution
is not sensitive to the initial condition, different time steps do give different dynamical
behaviour. For instance, using the initial condition z = (0-5, 0-5, 0-5, 0-5, 0-5) and time steps
¢ <002, it was found that both methods gave stable quasi-periodic motions. However,
when the time step was increased to 7 > 0-02, RK4 still shows stable quasi-periodic motion,
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Figure 13. Comparison of RK4 (a) and GS1 (b) for Model (I1I) with different time steps when 4 = 04390,
B =1-1975: (1) ¢ = 0-02; (2) £ = 0-08.

while GS1 gives stable motion which is not quasi-periodic, but periodic. Two cases are
shown in Figure 13, where the RK4 results are shown in the left column (a) and the GS1
results are given in the right column (b). The corresponding Poincaré maps are shown in
Figure 14, which clearly indicate that for the GS1 method, when the time step equals 0-04,
the quasi-periodic motion is degenerated to a periodic solution, since its Poincaré map is
a point, not a closed orbit. It should be noted that the Poincaré maps are projected on to the
y1-y2 plane since the results given by the GS1 method are degenerated to periodic solutions
on the y;—y, plane. Part (2b) in Figure 14 is actually just one point (0, 0). In fact, comparing
part (2a) with (1a) indicates the degeneration of the method GS1 as the time step increases,
while the RK4 method has almost no influence from the time step change. This is due to the
fact that the GS1 method is only first order accurate, while the RK4 method is fourth order.
The order has little influence on the convergence to an equilibrium, that is why the GS1
method is more robust than the RK4 method for the static analysis (see Table 3). For the
dynamical analysis, on the other hand, a solution to the IVP problem converges to either
periodic or quasi-periodic motions, so that it may be sensitive to initial conditions. In this
case, the RK4 method is more robust than the GS1 method since it gives a more accurate
solution due to its higher order.

5. CONCLUSIONS

A coupled Brusselator chemical system has been studied in detail to show its rich
dynamic behaviour in the vicinity of three different types of critical points. Closed-form
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Figure 14. Poincaré maps for the comparison of RK4 (a) and GS1 (b) for Model (III) with different time steps
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solutions have been obtained, via bifurcation analysis, for periodic and quasi-periodic
solutions. The stability conditions for the steady state solutions are also given explicitly in
terms of the system parameters. Critical stability boundaries along which incipient and
secondary bifurcations leading to periodic solutions and quasi-periodic motions on 2-D tori
are also explicitly obtained. All the results are derived using the normal form theory and
centre manifold theory. Two numerical approaches have been applied to confirm the
analytical predictions. It is shown that the GS1 method and the fourth order Runge-Kutta
method gave roughly the same results. But the first order GS1 method is more robust and
takes less computation time. The coupled Brusselator may exhibit chaotic motions, which
are not considered in this paper and will be reported in a separate article later.
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